

Team of AUSTRIA

Harald Altinger, Bernhard Frena, Eva Hasenhütl, Christina Koller, Camilla Ladinig

Problem Nr. 15: Brazil Nut Effect

When granular mixture is shaken the larger particles may end above the smaller ones. Investigate and explain this phenomenon. Under what conditions can the opposite distribution be obtained?

Reporter: Camilla Ladinig

<u>Structure</u>

- Common Explanation
- Life Experiments Observations
- Experimental Setup
- Physical Models
- Quantitative Estimation
- 2-dimensional Setup
- Conclusions
- Literature

15. Brazil Nuts Effect

Chart 2

Common Explanation

- ⇒ Small nuts tend to fall through the spaces between the bigger ones
- ⇒ Small nuts can easier fill the spaces underneath the bigger ones
- ⇒ Especially at the rim of the container less pushes between particles and the rim as in the middle between the particles

Brisbane 2004

Life Experiments - Observations

steel balls with intruders of different shape (shaking direction dependence)

Physical Models

Models treated:

- Convection model
- Condensation model
- Other models can be found in the literature

2 possibilities:

- Brazil Nuts Problem BNP: larger particles up
- Reverse Brazil Nuts Problem RBNP: larger particles down (Occurs when the amplitude of the vibration is big enough and the vessel is deep enough. $\rightarrow E_{kin}$ of the grains)

15. Brazil Nuts Effect

Chart 6

a) Convection model

Models (2)

b) Condensation model

(analogy with kinetic theory of thermodynamics)

Assumption:

- "critical temperature" Tc, where the particles somewhat appear to ,,freeze"
- system of elastic hard spheres with mass m and diameter d in the presence of gravity
- medium kinetic energy of the grains equivalent to the "temperature" T by shaking
- at a certain energy system becomes "fluid"

b) balls with different diameter and mass:

$$\left(\frac{d_{\rm A}}{d_{\rm B}}\right)^{\rm D-1} \approx \frac{m_{\rm A}}{m_{\rm B}}$$

d ... diameter of balls A,B, ...

- m ...mass of balls A, B, ...
- D ...spatial dimension of the container

For D = 2 (two dimensional containers)

balls: $d_b = 2 \text{ mm}, m_b = 55 \text{mg}$ disk: $d_d = 12 \text{mm}, m_d = 855 \text{mg}$

$$\frac{d_d}{d_b} = 5,9 \rightarrow \frac{m_d}{m_b} = 15,6$$

RBPN

Brazil Nuts\DSCN3343.MOV

> BN-Effect & RBN – Effect shown in several experiments

good agreement between the experiments and the models found in the literature

J. Knight, H. Jaeger and S. Nagel: Phys. Rev. Letters 70, 3728 (1993) D.C. Hong, P.V. Quinn, S. Luding: Reverse Brazil Nut Problem: Competition between Percolation and Condensation Phys. Rev. Letters, 86(15), 3423 (2001)

Opponence 15. Brazil Nuts Effect

🙂 What we liked:

🕚 What we liked less:

Opponent:

Review 15. Brazil Nuts Effect

🙂 What we liked:

🙂 What we liked less:

In the report:

In the opponence:

Reviewer: