

Problem No. 15

Heat and Temperature

Reporter: Timotheus Hell

Struture

- Experimental Setup
 - Measurements
 - Graphs
- Measurements NaCl
 - Boiling Point
 - Energy necessary
- Alternative experiment
- Results
- Conclusion

The Task

A tube passes steam from a container of boiling water into a saturated aqueous salt solution. Can it be heated by the steam to a temperature greater than 100°C? Investigate the phenomenon.

Experimental Setup

- A tube passes steam from a container of boiling water into a saturated aqueous salt solution.
- The temperature is logged on a PC
- Different solutions are tested

Measurement

 Conditions: 100,85kPa First test: Pure water: 99.6°C Saturated solutions of: NaCl: 108.1°C CuSO4 99.9°C 99.8°C KMnO4: 102.5°C Na2SO4: 106.3°C NaNO3:

No standard conditions: pressure < 101.325 kPa => slightly lowered BP

Graphs

pronounced BP for all solutions depending on solute

Stirring (NaNO3):

The endotherm reaction cools down the solution

Bratislava 2006

Measurement: NaCl

- NaCl gave the best results
- Highest temperature: 108.1°C

- We investigated:
 - 1) Boiling point > 100°C
 - 2) Energy to reach > 100°C (steam < 100°C)

(from now on NaCl is refered to as "salt")

Team Austria

Boiling point elevation > 100°C

Raoult's law: A solution has a higher boiling point than the pure solvent.

 $\Delta T_{B.P.} = Kb \times m \times i$ $\Delta T_{B.P. \text{ salt in water}} = 0.52 \times 6,70 \times 2$ $= 7^{\circ}$

Experiment: 8,5° (99,6° -> 108.1°)

Difference between calculated value and experiment: 1,5°

T...temperatur
m...molality of the solute (mol/kg)
Kb...ebullioscopic constant (depends on solvent)
i... Van't Hoff factor (2 as salt the salt dissociates and separates in anions and cations)

saturated: 28% salt -> 1kg water solves 389g 1 mol salt = 58,4 g -> 6,7 molality

Boiling point elevation: Salt

When the salt dissociates and separates in anions and cations, water molecules form clusters around it

Slightly positive hydrogen are attracted to chlorine anions

Bratislava 2006

Team Austria

Energy to reach 108°C

saturated salt solution 28% salt, 72% water

salt : 0,854
$$kJ/_{(kg \cdot K)}$$
 Cwater : 4,17 $kJ/_{(kg \cdot K)}$

$$E = Q = m \cdot c \cdot \Delta t$$
$$E = E_1 + E_2$$

 $(m_w + m_s) \cdot c \cdot \Delta t = m_w \cdot c_w \cdot \Delta t + m_s \cdot c_s \cdot \Delta t$

$$c = \frac{m_w \cdot c_w + m_s \cdot c_s}{m_w + m_s}$$

$$c = \frac{0,72 \cdot 4,19 + 0,28 \cdot 0,854}{1} \approx 3,26 \frac{k_J}{(kg \cdot K)}$$

8,5° => 8.5 · 3.26 = 27,71 kJ are needed

Values form Halliday/Resnick/Walker: Physik, extended 6th edition, 2001

Bratislava 2006

Water condensates, salt is solved

1 mol salt is solved	+3.89kJ
Salt is solved in 1 mol water 1 mol water (steam) condensates	+0.479kJ -40.7kJ
1 mol water that condensates, salt is solved	-40,221kj
27,71 kJ are needed 1mol water = 18g 18g => 40,221kJ => There should be about 12,4g more water afte	r the experiment

Experiment

- 500g saturated salt solution
- 28% salt
- Measurement:
 - 6,3g more water
 12.6g for 1kg
 - 12,6g for 1kg

Alternative experiment

- Higher pressure -> hotter steam
- Temperature should be >100°C when it reaches the container

The Experiment

Results

Pot	120 °C	
Steam	115 °C	
Salt solution	108 °C	
Pressure (absolute)	180 kPa	

This way the salt solution can easily be heated by the steam to a temperature greater than 100°C!

A higher temperature cannot be reached as the BP (108°) does not change

Conclusion

- Yes, it is possible to heat the solution to a temperature greater than 100°C.
- The water's BP is elevated to about 108° when salt is added
- The solution is heated by the energy the condensing steam provides
- 1mol of steam (18g) provides 40,221kJ
- Works faster using a pressure cooker